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This paper describes the stabilization of compressor surge by an active method. It is 
known that surge follows when small disturbances grow in an unstable compression 
system, and that small growth can be modelled through a linear stability analysis. 
An active element is here introduced to  counter any tendency to instability and the 
control law governing the active stabilizer is determined from linear theory. We 
follow precisely the suggestion put forward by Epstein et al. (1986) and verify that 
their theory conforms to practice. The theory is verified in an experiment on a 
compression system whose plenum volume is controlled. Suppression of the flow 
instability was achieved by switching on the controller and the compressor was made 
to operate stably on a part of its characteristic beyond the nature stall line. 
Furthermore the controlled compressor is much more resilient to external 
disturbances than is the natural case. The controller is even effective on deep surge 
- a feature of great interest but hardly predictable from the Epstein et al. initiative 
for this kind of study. 

1. Introduction 
The mean pressure rise across a compressor rotor revolving a t  steady speed is 

characterized by the pressure rise versus throughflow curve. This characteristic has 
a maximum, near the point corresponding to incipient stall conditions where flow is 
becoming detached from the rotor surfaces. The angle of incidence onto the sections 
is reduced by increasing the throughflow, so that the right-hand side of the 
characteristic curve marks a region where the flow tends to be stable and the slope 
of the pressure/throughflow line is negative. On the left of the peak pressure points 
tends to lie the unstable region where the flow is rough and unsteady. 

The pressure delivered by the compressor must of course drive the flow onward 
through the ‘throttle ’ that controls the throughflow rate, the higher the pressure the 
higher the flow, the precise form of the throttle pressure versus throughflow 
characteristic depending on the throttle area. Three typical cases are illustrated in 
figure 1, the mean flow through the compressor/throttle system being set at the 
points where the compressor and throttle characteristics meet. Case 1 and case 2 in 
that  illustration correspond to stable compressor operation while case 3 is unstable. 
In  that case there are large-amplitude oscillations in the compressor delivery 
pressure (Emmons, Pearson & Grant 1955 ; Greitzer 1976) and that system instability 
is known as surge. Although the detailed mechanism of surge is complex, its principal 
features are contained in a beautifully simple model (Greitzer 1981). The unsteady 
behaviour of the compressor system (consisting of a compressor, a duct, a plenum 
volume and a throttle) is akin to  that of a Helmholtz resonator in which the 
compressor is an energy source and the throttle a damper. The inertia of the fluid in 
the duct and the ‘springiness ’ of the compressible fluid in the plenum constitute the 
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FIGIJRE 1 .  Typical characteristics of a compression system. 

resonant elements. When the oscillation receives more energy from the compressor 
than is dissipated in the throttle then any small perturbation in the flow will grow, 
initially exponentially with time and eventually developing into a large-amplitude 
oscillation limited by the nonlinear characteristics of the system. The stability of a 
compression system to small perturbations is critical to whether or not surge will 
occur, and the onset of surge can be predicted by a linear stability analysis (Emmons 
et u.Z. 1955; Stenning 1980). This linear model, if valid, implies that compressor surge 
will be suppressed by the active technique described by Epstein, Ffowcs Williams & 
Greitzer (1986). The main strategy of this control method is that the pressure 
fluctuation in the plenum is monitored, the signal phase-shifted and amplified to 
drive an element that varies the volume of the plenum. By means of the unsteady 
but controlled plenum volume, the natural balance between throttle and compressor 
flows is distorted; a controlled perturbation can alter the energy fed in by the 
compressor, change the dissipative energy through the throttle, and contribute to 
the oscillation energy directly, the precise effect depending on how the feedback 
signals are processed. 

In  this paper, we demonstrate experimentally that compressor surge is indeed 
suppressed by the feedback system suggested by Epstein et al. (1986). 

2. Stability of the compression system 
2.1. Compression system used in the experiments 

Our compression system consists of a centrifugal compressor (Holset type H1A) 
producing a pressure rise while delivering mass flow to a plenum. The discharge is 
through a duct of small diameter and throttled by a flow restricting valve. The 
compression system is a t  the ambient pressure a t  the compressor inlet and 
downstream of the throttle. A schematic illustration is shown in figure 2. During the 
experiments the compressor was operated over a range of speeds between 40000 and 
80000 r.p.m. 

The equations governing the dynamics of this compression system are the 
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FIGURE 2. The compressor and a schematic illustration of the compression system used in the 
experiments. 

particular cases of equations (ll), (12) and (13) in Greitzer (1976). The detailed form 
has been found from experiment (Huang 1988) to be 

( la)  dQ, 
x c  dt pfl(Q1)- (P-Pa)-ac(Ql-Ql)? 

-- = vdp Q1-Q2, a2 dt 

The term Xc(dQ,/dt) represents the inertia of the flow in the compressor ; xc is roughly 
proportional to the ratio of compressor length to  diameter. xt is a similar parameter 
for the throttle duct. a,(&, - &,) is an experimentally determined term prescribing 
the flow resistance in the compressor duct. 

In steady operation a t  constant mass flow rate &, the pressure rise f,(Q,) produced 
by the compressor is a characteristic function of that mass flow. We have measured 
this function with a special plenum whose volume was so small that  the system was 
free from surge in our measured mass flow range. The results are shown in figure 3, 
together with an .approximate empirical curve-fit to the data : 

mean pressure rise =f,(&,) 
= +ppU2(0.045arctan [120(~1-0.052)]+ 1.18 

+0.85&,-7.2@+4.7R}. (2) 
= &,/(PAc U )  is the non-dimensional mass flow rate, where U is the speed of the 

compressor blade tip, p is the mean air density (a constant in the experiment) and 
A ,  the cross-sectional area of the inlet duct. 

In  steady operation, the pressure drop f2(Q2) across the throttle is a function of the 
mass flow rate Q,. Under the conditions of the experiments, this function has been 

(3) 
found to be 

f&2, = SQk 

where S is a coefficient depending on the throttle area A,. 
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FIGURE 3. Characteristic of the compressor used in the experiment and the curve fitting 
formula in equation (2). 

We found the Helmholtz resonance frequency for our system to be wH = 2x: x 
37 s-’ by measuring the system response to  a pressure impulse. It also can be 
calculated from the usual formula wH = a[ 1 / (  Vxc)]i ,  taking measured values 
for the plenum volume V = 5.5 x lop3 m3, the parameter of the compressor duct 
xc = 3.9 x lo3 m-l and the speed of sound a = 340 m/s. We have ignored the inertia 
of the flow in the throttle which is small in our experiment. 

We non-dimensionlize the mass flow rate using the quantity PA,  U ,  the pressure 
using @qu2 and the time t using the characteristic time l / w H ,  to obtain the non- 
dimensional governing equations 

where 

2.2. Linearized stability analysis 
To find whether the system is stable or unstable, we follow established convention 
and examine its response to small perturbations when operating at a given condition. 
With given mean values $l = $2 = $, P = = T($2), we set q51 = $+a$,, 
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$,=$+8#,, p = P + & P ,  !P= Y($l)+!P'6$, and T = P + T 6 $ ,  to arrive a t  the 
linear equations governing small-amplitude operation : 

(5) 

= = M(6P- T6$,). d7 

These equations have solutions of the form esT, for 
characteristic equation 

where 
s3 + a2s2 + a15 + a, = 0, 

which (5) corresponds to the 

a,, = A(BT+p-B!P'), a, = ~+A+BAT"(,M-B!P'), = ABT'+/L-B!P'. 

The Routh-Hurwitz stability criterion (Drof 1980) gives necessary and sufficient 
conditions for the real parts of all roots of (6) to be negative as 

a, > 0, a2 > 0, a1a2 > a,. (7) 

These constraints define the stable range of our compression system. By substituting 
the measured values and the functions into (7), the linear instability point at which 
the stability conditions (7) will just be broken and the compression system will 
'surge' can be predicted. We define the throttle characteristic corresponding to that 
instability point as the surge boundary. 

We carried out an experiment to measure the surge onset point and compared the 
measured result with that predicted using (7). Figure 4 shows that the predicted 
result is satisfactorily close to the experimental result. 

2 .3 .  Numerical evaluation and surge observation 
It is known (Emmons et al. 1955; Greitzer 1976) that when small fluctuations of the 
pressure and mass flow can grow in a compression system, they will finally develop 
into a limit cycle which makes the operating point (determined by the average 
pressure and mass flow rates) leave the original compressor characteristic ; the 
compressor is then in surge. In  that limit cycle, the oscillation amplitudes of the 
pressure and mass flow rate are relatively large and the oscillation frequency is 
usually lower than that of the most unstable small-amplitude fluctuations. Surge is 
limited by the nonlinear characteristics of the compressor and throttle. We have 
carried out a numerical calculation to  solve equation (4) at the surge onset point and 
to observe qualitatively the transient behaviour as the weak fluctuations develop 
into surge. We agree that the nonlinear model is extremely heuristic - but 
nevertheless we think it is interesting enough to include. The experimental curve-fit 
function (2) was used as the compressor characteristic when the non-dimensional 
mass flow rate > 0.04, while in the range 4, < 0.04, we used the parabola (Hansen 
Jsrgensen & Larsen 1981), 1.1 +32&, the two curves being connected smoothly. The 
calculated results are illustrated in figure 5 ( a )  by plotting the variation of the 
pressure P with time 7. We see that the pressure leaves its early unsteady stage when 
the oscillation amplitudes are still very small and settles into the amplitude-limited 
oscillations within a time of about 2-3 periods. The surge frequency is 89% lower 
than the Helmholtz resonance frequency in this numerical simulation. We have 
observed this system transient behaviour in our experiment by recording the 
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pressure fluctuation trace in the plenum ; this is shown in figure 5 ( b ) .  Before the onset 
of surge, the oscillation amplitudes were very small and were nearly submerged in the 
ever-present noise of the system. The surge frequency was found to  be 65% lower 
than the Helmholtz resonance frequency. 

3. The compression system with a controlled plenum 
We now introduce a controller consisting of a surface A ,  which is part of a 

mass-spring system responding to the unsteady pressure fluctuation in the plenum 
and an externally induced control force ; its displacement f produces a volumetric 
change A ,  6 in the plenum. The mass stored in the plenum is thus changed by PA, 6 
approximately. The displacement 6 is assumed to be proportional to the driving 
force, since the inertia of our surface A ,  is negligible in comparison with the spring 
stiffness at the frequencies in our experiment. The control force is generated by a 
feedback system which processes the signal detected by a pressure sensor located in 
the plenum. The whole system is schematically illustrated in figure 6(a) .  Based on 
that model, an experimental device was arranged, shown in figure 6(b ) ,  in which a 
loudspeaker implemented the surface A,. The dynamic equations of the system are 
modified by the controller, from equation (1)  to  the following : 

_- vdp = 
a2 dt 
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FIGURE 5. (a) Kumerical simulation of the transient process as the small-amplitude pressure 
oscillations grows into surge. ( b )  A typical pressure trace recorded in the experiment a t  the point 
of surge onset. 

The terms underlined represent the controller action. We have chosen to represent 
the controller as a variable area, G, though this is admittedly somewhat arbitrary. 
G is actually some temporal operator assumed to be independent of response 
amplitude. Equation (8) can be rearranged in non-dimensional form 

where 7 = (pa2Ai/VK),  2, = (pa2A,/VK)C (our operator 2, is equivalent to Z, /M2 
defined by Epstein et al. 1986) ; other parameters are the same as those in (4). 

9 FLM 204 
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FIGURE 6. (a) Model of the compression system with a controlled plenum. (b) Geometry of the 
compression system with the controller used in the experiments. 

Two new terms have been introduced into the governing equations by the 
controller. The term q(dPld7) is caused by the pressure-induced motion of surface 
A , ;  this reduces the resonance frequency of the system and is a destabilizing effect. 
The term Z&dP/d.r) is our representation of the control force, by which we wish to 
improve the system stability. 

and 6Y, from (9), will The linear perturbation equations for the quantities a$,, 
become 

!!% = B( VY'sq5, - 6P) -p6$,, 

- ('I + 26) -&- 1 

d7 
d6P Sq5,-6q5, 

-- d6q52 - 

-- - 
d7 B 

dr  

These equations are basically identical to (22) and (23) in Epstein et al., but in a form 
in which the flow acceleration in the throttle duct is considered, and they have 
solutions of the form em; equation (10) then reduces to the characteristic equation 

s+a, s3 + a2s2 + a, + b,  = 0, [ (1 + 'I1+ 2,- 91 1 + 'I + 2, 
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FIGURE 7 .  The effect of a real control parameter g ,  on the system stability. a is the real part of the 
eigenvalue of equation ( 1  l ) ,  a, being the value when g ,  = 0. q5 is the average non-dimensional mass 
flow, 9, being the value a t  the natural surge onset point. (a  - a,) > 0 indicates the range where the 
controller stabilizes the compression system. 

where a,, a,, a2 have been defined in (6) and b, = l + h .  fit, generally being a 
polynomial, or the ratio of two polynomials, in s, is the control law corresponding to 
applying the operator 2, on esT. The control law could also have an exponential term 
accounting for time delay. 

The system stability is now not only dependent on the parameters a,, a,, and apr  
but also on the control parameter, 2,. The calculated results, carried out around the 
natural surge point are illustrated in figure 7 for the special illustrative case where Zg is arranged to be real and independent of s. This shows that a real and negative 
2, will always improve the system stability in the range - ( l + q )  < z, < 0, while it 
will tend to  destabilize the system when 2, is real and positive. I n  the absence of a 
control force (gc = 0), the system stability will be reduced in comparison wit,h that 
of the hard-walled plenum, because for a spring 7 > 0 and 7 has exactly the same 
effect on the system stability as does g,, a fact evident from (11). The controller can 
obviously have a wide range of influence because the control parameter can be 
arranged to have a variety of complex forms for various complex eigenfrequencies. 

In our previous analysis, the compressor and the throttle, which are two nonlinear 
components in the system, act mainly as energy source and sink. If we stop the 
rotation of the compressor (Y = 0) and close the throttle (T = 0, h = 0), then the 
characteristic equation (1 1) reduces to 

- =o.  1 
S '+pS+ 

l + q + Z ,  

We set eo = l / ( i + q )  and z = gt / ( l+q)  (these forms are convenient for direct 
measurement) to write (12) as 

The control parameter z has the form 
s 2 + p S + E o / ( l  + z )  = 0. (13) 

z = Geib, (14) 
9-2 
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FIGURE 8. (a) The system stability is changed by the controlled plenum, depending on the 
controller gain and the phase shift. (6) The system resonance frequency is changed by the 
controller. a and w are the real and imaginary parts of the eigenvalue of equation (13); Po and wo 
being the values when G = 0. 

the gain G and phase p both being real functions of frequency. G is the amplitude 
ratio of input signal to output signal of the feedback loop and /3 is the phase-shift in 
the feedback loop. With no gain ( z  = 0) ,  the solutions of (13) are denoted by 

so = aofiwo = -$,ufi(eo-@ 1 2 t  ) , 

a. = -b being the non-dimensional system damping and wo M e i  (for small 
damping) the non-dimensional resonance frequency of the uncontrolled system. 
e0 = 1/(1 + q )  < 1 because 7 is positive (the control surface A ,  supported only by the 
spring reduces the system resonance frequency). We have measured the system 
resonance frequency, in this condition, to be 28.5 Hz, and on comparing this with t,he 
value for the hard-wall plenum, f H  = 37 Hz, i t  follows that co M 0.6 and 7 M 0.67. 

The solutions of (13) have a form s = a + iw, in which both a and w are dependent 
on the control parameter z .  We solve (13) and (14) with a constant gain and different 
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FTGL-RE 9. ( a )  A typical time history of the system response following the switching on of the 
controller showing disturbance growth. The phase was set t o  destabilize an otherwise stable 
operating condition. ( b )  Temporal response of the system to a pressure impulse - which was 
damped out  quickly. The controller was here set to stabilize a naturally unstable operating 
condition. 

phase shift from 0' to  360". The calculated results are indicated in figure 8. Figure 
8 ( a )  shows that in the phase range 0"-180", the controller will reduce the system 
damping, even change its sign ; while in the phase range 180"-360", the controller will 
increase the system damping. From the experimental results in figure 9, we can see 
these two different trends illustrated. Figure 9 ( a )  shows a typical time history of the 
system response following the switching on of the controller. Figure 9 ( b )  shows the 
impulse response of the system in a case where the controller causes stability. 

4. Active stabilization of compressor surge 
In our experiments, the effect of the controller on the various aspects of the 

instabilities and the performance of the compression system were demonstrated by 
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comparing the uncontrolled operation, in which the compression system had a hard- 
wall plenum, with the controlled operation, in which the plenum had a controllable 
volume. 

The performance of the controlled compression system was assessed in the 
following ways. First tehe compressor was operated in the stable region (to the right 
of the natural surge boundary) with the controller activated. The throttle was then 
progressively closed to move the compressor operation points towards the natural 
surge boundary and finally across it,  the pressure rise and the mass flow rate being 
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FIGURE 12. Recorded pressure fluctuations in the controlled plenum. A, B, C and D are four 
operating operating points a t  which the pressure fluctuations were recorded, (a-d ) respectively, 
point A being in the stable operation region while B, C, and D are a t  points beyond the natural 
surge boundary. (e) shows the surge pressure oscillations at  point D when the controller is 
switched off. 

monitored as long as the overall compressor behaviour remained stable. The final 
throttle position at  the point of instability marks the new surge boundary of the 
controlled compression system. The measured results are illustrated in figure 10, 
which shows that the controller has made the compression system operate stably 
beyond its natural surge boundary and in fact moved the surge boundary 
significantly towards the left. 

To observe the effect of the controller on compressor surge, we switched on the 
controller when the compressor was already operating in deep surge. By deep we 
mean here that the system is settled into a vigorous and steady oscillation. This is 
shown in figure 11, where both pressure traces and control signal records are 
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illustrated. The controller is extremely effective and the surge is suppressed almost 
instantaneously. This control effect demonstrates the important fact that the 
linearly controlled system can recover from surge even though surge is not a small- 
amplitude phenomenon. 

As an indication of stability level, we have measured the pressure fluctuations in 
the plenum while the controlled compressor was operated at different throttle 
positions. The measured results are given in figure 12. We can see that when the 
operating point is on the unstable side of the natural surge boundary, the amplitudes 
of the pressure fluctuations become larger. These pressure fluctuations are not surge 
(compare figure 12d with e ) ,  but are minor perturbations in a generally steady 
system. These perturbations are not able to develop into surge because of the action 
of the controller. In  other words, the controller has increased the ability of the 
compression system to endure external disturbance. 

Under normal conditions, to make the compression system surge the throttle 
should bc closed. But that  is not a necessary condition. Surge can also be induced by 
a sufficiently energetic external trigger, even though the system is operated in a 
linearly stable region. There is a throttle line to  the right of the natural surge 
boundary, beyond which the compression system will not surge under any level of 
disturbance and is therefore absolutely stable. In our experiments, we measured the 
stability boundary points under different pressure disturbance levels and took the 
boundary points corresponding to very large disturbances as that  absolutely stable 
operation line. The measured results are indicated in figure 13, illustrated by black 
dots. We took the lowest throttle setting at which recovery from surge could be 
achicvcd by the controller as the lower stability boundary. This boundary is also 
indicated in figure 13. Comparing the two stability extremes shows that the 
controller has greatly enlarged the region of stable operation. 

In  order to suppress compressor surge, we must correctly choose the control 
parameter z = Ge'p, i.e. choose the gain and the phase-shift. Those points, in the 
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FIGURE 15. Time traces of the pressure fluctuations in the plenum at different speeds following the 
activation of the controller. The dashed line represents the time at which the controller was 
switched on. To the left of this line the compressor is in surge; to  the right is the subsequent 
controlled behaviour. 
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FIGURE 16. Time traces of the pressure fluctuations recorded in the plenum. The compressor was 
operated at high speed (80000 r.p.m.) and at the surge onset point. Under the influence of the 
controller the operation was stable ; the compressor went into surge immediately after the 
controller was switched off. 

(gain, phase)-plane, a t  which the controller can suppress surge constitute a stable 
area, and the points a t  which the controller cannot suppress the surge (even makes 
it worse) constitute an unstable region. The two regions are separated by a stability 
boundary. The controlled-compression-system characteristic equation ( 1  1 )  with a 
solution s = a+iw, specifies the stability boundary according to  a = 0, at which 
condition we solve (11)  a t  the throttle position just across the natural surge 
boundary. We thus define the stability boundary and the stable control region on the 
(phase, gain)-plane. Experimentally, the stability map can be obtained by measuring 
the effective range of phase angles at various gain settings. A comparison of the 
theoretical and experimental stability boundaries is mapped out in figure 14. It can 
be seen that the agreement is good in terms of both trend and location. 

We finally examine the behaviour of our controlled compression system at  higher 
rotational speeds (from 50000 to  80000 r.p.m.). The experimental results illustrated 
in figure 15, which are pressure traces recorded in the plenum following switching on 
of the controller, show clearly that the controller still has the ability, in the speed 
range from 50000 to 70000 r.p.m., to bring the system out of the deep surge. When 
the speed was over 75000 r.p.m., however, we found that the controller became 
ineffective on the fully developed surge. This is probably because the surge pressure 
oscillating inside the plenum at this high speed exerts an overwhelmingly strong 
force on the diaphragm of the loudspeaker and so prevents the control force created 
by the feedback loop from moving the diaphragm correctly. Since the controller was 
designed to cancel small disturbances in the early stages of surge development, the 
controller should still be effective in preventing these initial disturbances from 
growing, even though the controller will be ineffective once they have developed into 
surge. This was indeed found to  be the case. With the controller switched on the 
throttle was closed so as to bring the operating point across the natural surge 
boundary while maintaining stability. At a suitable point deep enough into the 
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FIGURE 17. The effect of active stabilization on compressor performance a t  different operation 
Hpeeds and different parameter B. The position of the natural surge boundary changes as a results 
of changes in the speeds and in B.  

naturally unstable region the controller was switched off and the ensuing collapse 
into surge was observed. The transient processes are illustrated in figure 16 where 
surge occurs immediately following the absence of the control action. 

The improvement of the surge boundary under controlled conditions was also 
checked at  higher rotational speeds. It was found, by comparing low-speed and high- 
speed operations as illustrated in figure 17, that the improvement of the surge 
boundary was always less at high rotational speeds. The lowering of control 
effectiveness was due to the limited force available in our controller, a force of 
therefore diminishing non-dimensional strength as the flow increases. The transfer 
function of the feedback loop is set under a condition where the input signal is small. 
The motion of our experimental control surface (loudspeaker) is amplitude-limited 
when the input signal is relatively big, and whenever instability waves get bigger 
than those which can be generated by the loudspeaker the control becomes 
improbable. Actuators designed to cope with typical compressor delivery conditions 
will obviously be different from audio equipment, and the development of those 
actuators is what is needed now to connect this laboratory demonstration of 
principle into a useful technology. 
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5. Conclusions 
Active stabilization of compressor surge has been achieved in our experiments with 

a compression system incorporating a controlled plenum ; the controller is able to 
alter the system damping and the resonance frequency. The results show that the 
compression system can be effectively stabilized by switching on the controller before 
or even after surge occurs. Our experiments indicate that the linear controller is 
effective even in this nonlinear aerodynamic case, and this makes us believe that the 
stability and the performance of compression systems generally could be greatly 
improved through active control techniques of this type. 
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